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Multifractality of quasihomogeneous states
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The hypothesis thaglobal multifractality of random systems near a homogeneous state is similacab
behavior of the generalized dimensi@n, in the vicinity of the capacity dimensioD, is compared with
laboratory experimental data obtained by different authors in low-Reynolds-number (bwise onset of
chaos in the wake of an oscillating cylinder and at near-wall transitional turbulent fmmpetition of two
kinds of the multifractality, namely, “log-normal” and “critical,” is investigated and good agreement with
experimental data is established for the case of critical multifractd®$063-651X97)11805-0

PACS numbd(s): 47.27—i, 05.45+b

If we study somepositivefield y on some uniform space Then the first nontrivial approach fgq) in this vicinity for
grid of sizer, then we can define the partition functiGeee, the “normal” case is
for instance[1,2])

d?f
; f@=fot 3| gg| o ®
24r)=2, Da(0, (1) oo

Formally, we can consider also a “critical” case with
wherey;(r) is defined on the grid in a suitable way aNds

the number of the boxes of the grid. If there exists scaling im (ﬂ) —_a 9

d - I

Zq(r)""rTq (2) qg—+0 q
then the generalized dimension is defined as lim ﬁ —a (10)
q--odal
= 3

(9—1) wherew>a>0. For the critical case

The Legendre transform a=—aln|g/+C, (gq>0) (11)
dr,
a= g H@=aa-7, @

a=aln|g|+C_ (g<0), (12

defines the so-called multifractédr singulay spectrum.
We make the hypothesis that tlobal multifractality =~ whereC, andC_ are some constants. In the critical case the
(i.e., one valid for a wide range of values gf of random first nontrivial approach td(q) is
systems near homogeneous state is similar toldbal be-
havior of the generalized dimensiddy, in the vicinity of f(a)=fo—aq (g>0) (13
Dy (whereD, is the capacity dimensign
Thus we should first study the general behavioDgfin
the_ V|c!n|ty_of ‘_FQ- Lgt us expand (a(q)) in the Taylor f(q)=fo+aq (q<0). (14)
series in this vicinity, i.e.,

and

2
f(q)=fo+ ﬁ) q+ l (d_';) Pt (5) nonrealizable in the vicinity ofj=0. Our hypothesis, how-
da/,_," 2\dq’/ _, ever, gives a possibility to observe this kind of multifractal-
_ ity for moderate and large values @fwhile in the vicinity of
Since g=0 itself the normal case is realizésee comparison with
experimental data below
ﬂ:q d_a 6) For 7, we obtain in the normal case
dg " dqg
d2f )
the normal case is Tq=—fotca+ 5 a9 (15
gq=0
df . .
- =0. (7) wherec is some constant which can be found from E). It
dq q=0 follows from Egq.(3) that r;=0 and, consequently, that
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It should be noted that the critical approximation may be



55
o8]
%/ 4-0
Then
Dq:f0+% :—:2) q (16
q=0

[recalling that dzf/dgz)q:0<0]. It is well known that this
representation ob, is complete for the case of log-normal
probability density function of (see, for instancé3—5] and
references therejn

On the other hand, for the critical case, one has

v=—aqIng+(a+C,)q—f, (g9>0) 17
and
rq=ag Injg|-(a=C_)q-f, (g<0). (19
From Eq.(3) (7,=0) we obtainC . so that
q=—aqIng+foq—fo (g>0). (19

We now compare these results with experimental data us-

ing the relationshig2]

mg=d(q—1)—7g, (20

where

(X)) Hy~r7Ha. (21)

In particular, we shall consider the cage= €, with

fsdv

Er=
v ’

wheree is the turbulent energy dissipation fieteh-r is the
volume of a cell of the grid, and is the topological dimen-
sion of the grid.

In the experiments under consideratitgee below f
=d. If we substitute Eq(19) into Eq.(20), we obtain for the
critical case

mq=2aq Inq. (22

Figure 1 shows low-Reynolds-number data at the onset of

chaos in the wake of an oscillating cylindé, 2] (the gener-
alized dimensions determined 6] come from probability
densities along a critical attractor at the onset of chaDae
can see good agreement with representaf@.

Figure 2 shows the experimental data obtained in low-

Reynolds-number near-wall turbulent flgy laser Doppler
anemometefLDA) measurementd7]. And again one can
see good agreement with the representai@®. It should be
noted that for small values af the experimental data ob-
tained in the experimen] can be fitted by the log-normal
multifractality [cf. statement after Eq14)]. One can also see
from Figs. 1 and 2 that numerical valuesaoare different in
these two cases.
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FIG. 1. Experimental low-Reynolds-number data at the onset of
chaos in the wake of an oscillating cylindér,2]. The solid straight
line indicates agreement of these data with &7).

Finally, let us make some concluding remarks. Two
things are happening simultaneously. One of them is a com-
petition between log-normal and critical multifractalities in a
general situation. The second is the difference between low-
and high-Reynolds-number behaviors. We have shown that
low-Reynolds-number data can be fitted by the critical mul-
tifractality even though, neag=0, log-normal approxima-
tion appears valid. On the other hand, high-Reynolds-number
data(such as representative [8,9]) could not be fitted by
the critical multifractality approximatiof22) directly and an
additional consideration should be made in this case. An-
other interesting question is if, for a general case, the notion
of critical has any relevance for large One should expect a
competition between critical-like multifractality and linear
asymptotic if the answer to this question is positive.

The author is grateful to C. H. Gibson and to G. P. Ro-
mano, and for information and for stimulating comments and
recommendations.
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FIG. 2. Experimental data obtained in low-Reynolds-number

near-wall turbulent flow(by LDA measuremenjs[7]. The solid
straight line indicates agreement of these data with(EZg).
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