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Multifractality of quasihomogeneous states
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~Received 26 August 1996!

The hypothesis thatglobalmultifractality of random systems near a homogeneous state is similar tolocal
behavior of the generalized dimensionDq in the vicinity of the capacity dimensionD0 is compared with
laboratory experimental data obtained by different authors in low-Reynolds-number flows~at the onset of
chaos in the wake of an oscillating cylinder and at near-wall transitional turbulent flow!. Competition of two
kinds of the multifractality, namely, ‘‘log-normal’’ and ‘‘critical,’’ is investigated and good agreement with
experimental data is established for the case of critical multifractality.@S1063-651X~97!11805-0#

PACS number~s!: 47.27.2i, 05.45.1b
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If we study somepositivefield x on some uniform space
grid of sizer , then we can define the partition function~see,
for instance,@1,2#!

Zq~r !5(
i51

N

@x i~r !#q, ~1!

wherex i(r ) is defined on the grid in a suitable way andN is
the number of the boxes of the grid. If there exists scalin

Zq~r !;r tq ~2!

then the generalized dimension is defined as

Dq5
tq

~q21!
~3!

The Legendre transform

a5
dtq
dq

, f ~a!5aq2tq ~4!

defines the so-called multifractal~or singular! spectrum.
We make the hypothesis that theglobal multifractality

~i.e., one valid for a wide range of values ofq! of random
systems near homogeneous state is similar to thelocal be-
havior of the generalized dimensionDq in the vicinity of
D0 ~whereD0 is the capacity dimension!.

Thus we should first study the general behavior ofDq in
the vicinity of q50. Let us expandf „a(q)… in the Taylor
series in this vicinity, i.e.,

f ~q!5 f 01S d fdqD
q50

q1
1

2 S d2fdq2D
q50

q21••• . ~5!

Since

d f

dq
5q

da

dq
~6!

thenormal case is

S d fdqD
q50

50. ~7!
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Then the first nontrivial approach tof (q) in this vicinity for
the ‘‘normal’’ case is

f ~q!. f 01
1

2 S d2fdq2D
q50

q2. ~8!

Formally, we can consider also a ‘‘critical’’ case with

lim
q→10

S d fdqD52a, ~9!

lim
q→20

S d fdqD5a, ~10!

where`.a.0. For the critical case

a52a lnuqu1C1 ~q.0! ~11!

and

a5a lnuqu1C2 ~q,0!, ~12!

whereC1 andC2 are some constants. In the critical case t
first nontrivial approach tof (q) is

f ~q!. f 02aq ~q.0! ~13!

and

f ~q!. f 01aq ~q,0!. ~14!

It should be noted that the critical approximation may
nonrealizable in the vicinity ofq50. Our hypothesis, how-
ever, gives a possibility to observe this kind of multifracta
ity for moderate and large values ofq while in the vicinity of
q50 itself the normal case is realized~see comparison with
experimental data below!.

For tq we obtain in the normal case

tq.2 f 01cq1
1

2 S d2fdq2D
q50

q2, ~15!

wherec is some constant which can be found from Eq.~3!. It
follows from Eq.~3! that t150 and, consequently, that
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c5 f 02
1

2 S d2fdq2D
q50

.

Then

Dq. f 01
1

2 S d2fdq2D
q50

q ~16!

@recalling that (d2f /dg2)q50,0#. It is well known that this
representation ofDq is complete for the case of log-norm
probability density function ofx ~see, for instance,@3–5# and
references therein!.

On the other hand, for the critical case, one has

tq.2aq lnq1~a1C1!q2 f 0 ~q.0! ~17!

and

tq.aq lnuqu2~a2C2!q2 f 0 ~q,0!. ~18!

From Eq.~3! (t150) we obtainC1 so that

tq.2aq lnq1 f 0q2 f 0 ~q.0!. ~19!

We now compare these results with experimental data
ing the relationship@2#

mq5d~q21!2tq , ~20!

where

^~x r !
q&;r2mq. ~21!

In particular, we shall consider the casex r5e r with

« r5

E
v
« dv

v
,

where« is the turbulent energy dissipation field,v;r d is the
volume of a cell of the grid, andd is the topological dimen-
sion of the grid.

In the experiments under consideration~see below! f 0
5d. If we substitute Eq.~19! into Eq.~20!, we obtain for the
critical case

mq.aq lnq. ~22!

Figure 1 shows low-Reynolds-number data at the onse
chaos in the wake of an oscillating cylinder@6,2# ~the gener-
alized dimensions determined in@6# come from probability
densities along a critical attractor at the onset of chaos!. One
can see good agreement with representation~22!.

Figure 2 shows the experimental data obtained in lo
Reynolds-number near-wall turbulent flow@by laser Doppler
anemometer~LDA ! measurements# @7#. And again one can
see good agreement with the representation~22!. It should be
noted that for small values ofq the experimental data ob
tained in the experiment@7# can be fitted by the log-norma
multifractality @cf. statement after Eq.~14!#. One can also see
from Figs. 1 and 2 that numerical values ofa are different in
these two cases.
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Finally, let us make some concluding remarks. Tw
things are happening simultaneously. One of them is a co
petition between log-normal and critical multifractalities in
general situation. The second is the difference between lo
and high-Reynolds-number behaviors. We have shown t
low-Reynolds-number data can be fitted by the critical mu
tifractality even though, nearq50, log-normal approxima-
tion appears valid. On the other hand, high-Reynolds-num
data~such as representative in@8,9#! could not be fitted by
the critical multifractality approximation~22! directly and an
additional consideration should be made in this case. A
other interesting question is if, for a general case, the not
of critical has any relevance for largeq. One should expect a
competition between critical-like multifractality and linea
asymptotic if the answer to this question is positive.

The author is grateful to C. H. Gibson and to G. P. R
mano, and for information and for stimulating comments a
recommendations.

FIG. 1. Experimental low-Reynolds-number data at the onset
chaos in the wake of an oscillating cylinder@6,2#. The solid straight
line indicates agreement of these data with Eq.~22!.

FIG. 2. Experimental data obtained in low-Reynolds-numb
near-wall turbulent flow~by LDA measurements! @7#. The solid
straight line indicates agreement of these data with Eq.~22!.
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